Quantitative model of the phase behavior of recombinant pH-responsive elastin-like polypeptides.

نویسندگان

  • J Andrew Mackay
  • Daniel J Callahan
  • Kelly N Fitzgerald
  • Ashutosh Chilkoti
چکیده

Quantitative models are required to engineer biomaterials with environmentally responsive properties. With this goal in mind, we developed a model that describes the pH-dependent phase behavior of a class of stimulus responsive elastin-like polypeptides (ELPs) that undergo reversible phase separation in response to their solution environment. Under isothermal conditions, charged ELPs can undergo phase separation when their charge is neutralized. Optimization of this behavior has been challenging because the pH at which they phase separate, pHt, depends on their composition, molecular weight, concentration, and temperature. To address this problem, we developed a quantitative model to describe the phase behavior of charged ELPs that uses the Henderson-Hasselbalch relationship to describe the effect of side-chain ionization on the phase-transition temperature of an ELP. The model was validated with pH-responsive ELPs that contained either acidic (Glu) or basic (His) residues. The phase separation of both ELPs fit this model across a range of pH. These results have important implications for applications of pH-responsive ELPs because they provide a quantitative model for the rational design of pH-responsive polypeptides whose transition can be triggered at a specified pH.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-chromatographic Purification of Recombinant Elastin-like Polypeptides and their Fusions with Peptides and Proteins from Escherichia coli

Elastin-like polypeptides are repetitive biopolymers that exhibit a lower critical solution temperature phase transition behavior, existing as soluble unimers below a characteristic transition temperature and aggregating into micron-scale coacervates above their transition temperature. The design of elastin-like polypeptides at the genetic level permits precise control of their sequence and len...

متن کامل

Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers

Elastin-like polypeptides (ELP) are artificial, genetically encodable biopolymers, belonging to elastomeric proteins, which are widespread in a wide range of living organisms. They are composed of a repeating pentapeptide sequence Val-Pro-Gly-Xaa-Gly, where the guest residue (Xaa) can be any naturally occurring amino acid except proline. These polymers undergo reversible phase transition that c...

متن کامل

Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia.

Elastin-like polypeptides (ELPs) are biopolymers of the pentapeptide repeat Val-Pro-Gly-Xaa-Gly that undergo an inverse temperature phase transition. They are soluble in aqueous solutions below their transition temperature (T1) but hydrophobically collapse and aggregate at temperatures greater than T1. We hypothesized that ELPs conjugated to drugs would enable thermally targeted drug delivery t...

متن کامل

Elastin-based Biopolymers for Biomedical and Biotechnological Applications

Perhaps the most appealing opportunity is represented by gaining inspiration from nature for the precise tailoring of biomaterials with finely tuned unique functional properties. A very promising model is represented by Human Elastin-Like Polypeptides (HELP), repetitive artificial polypeptides based on pentaor hexapeptidic motifs that characterize elastin. These protein polymers retain several ...

متن کامل

Application of thermally responsive polypeptides directed against c-Myc transcriptional function for cancer therapy.

Elastin-like polypeptides are biopolymers composed of the pentapeptide repeat Val-Pro-Gly-Xaa-Gly. Elastin-like polypeptides are soluble in aqueous solution below their transition temperature, but they hydrophobically collapse and aggregate when the temperature is raised above the transition temperature. Previous studies have suggested that the aggregation of these polypeptides in response to e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomacromolecules

دوره 11 11  شماره 

صفحات  -

تاریخ انتشار 2010